
A Model Implementation1

In this section, we will provide more details about model implementation.2

A.1 SEAL3

The attention computation for the entire spacetime patches is essentially a modeling of very long4

sequences, and therefore, it is a memory-intensive computational process. We utilized the mem-5

ory_efficient_attention function from Xformers to reduce memory consumption. In the case of6

inputting epipolar attention masks, we modified the function so that the computed attention weights7

are forcibly assigned a value of negative infinity at the positions where the mask value is 1.8

A.2 Camera Embeddings9

For raw camera embeddings, we first flatten the rotation matrix and translation vector into a vector10

of length 12. Then, we transform it into a 96-dimensional vector through positional encoding. For11

the Plücker embedding, we pre-compute an embedding with the same resolution as the UNet input.12

For different sizes, we use pixel unshuffle to change its size while preserving as much fine-grained13

positional information as possible.14

A.3 Embedding coordination15

In the case of I2V-adapter, we can directly use the epipolar attention masks computed in SEAL to16

extract effective spatial information from the context frame. Similarly, the precomputed camera17

embedding can be inserted into the IP-adapter to balance the expression of text and image information.18

In leveraging camera embedding to balance the expression of text and image information, the19

activation function is sigmoid function for fully-connected layers and its output p and 1 − p will20

multiply image and text embedding respectively to ensure mutual exclusive between two conditions.21

B Technical Details22

B.1 Data23

For RealEstate dataset, we use 67,477 scenes for training and 7,289 scenes for testing. For EpicK-24

itchen, we use 611 scenes for training and 88 scenes for testing. It should be noted that the duration of25

each scene of EpicKitchen is much longer than that in RealEstate. That’s why the number of scenes26

in EpicKitchen is much smaller.27

Following the protocol of CameraCtrl, we use BLIP to annotate every frame of both dataset for text28

prompting. The original captions provided in EpicKitchen are overly simplistic, such as "wash hand"29

or "open refrigerator." Additionally, they only annotate cooking-related actions, and most egomotion30

frames do not have captions. Therefore, we have to re-annotate this dataset using BLIP. The following31

are some examples of BLIP captions: “a person using a brush to clean a sink”;”a person holding a32

bowl in front of a microwave”; “a person standing in front of a TV holding a remote control.” Most33

captions involve interactions like "move" or hand-related actions. Meanwhile, since most scenes are34

static in RealEstate, its BLIP captions are generally overall descriptions of scenes like "a bedroom35

with a bed, a bedstand with lamb on it, and a windows". These text prompt mainly provides details of36

unobserved parts for imaginative purposes. For each training sample, we concatenate the captions of37

its first and last frame to form a text prompt.38

Besides, we found that a large number of videos in EpicKitchen suffer from significant motion blur39

due to rapid movement, which is detrimental to model learning. Therefore, we applied NAFNet [1]40

to perform motion deblurring on all frames.41

During the training, we use sample stride of 8 for RealEstate and 4 for EpicKitchen. We also used42

several additional techniques for data augmentation. In RealEstate, since most scenes are static, we43

can reverse the videos to generate additional motion trajectories. In both datasets, we can randomly44

increase or decrease the sample stride by one step to obtain video clips with different speeds. As a45

result, each training sample is consist of a 14-frame video clip, a text prompt and camera poses for all46

frames.47
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B.2 Training and Inference48

In the case of SVD and AnimateDiff, we keep the original parameters of our base models fixed and49

only optimize the newly introduced layers and their subsequent layers using the AdamW optimizer50

with learning rate 2× 10−4. All models are trained on 8 NVIDIA A100 GPUs for 300k iterations51

using an effective batch size 32. We use BF16 precision for training SVD.52

We use DDIM scheduler with 1000 steps during training and 25 steps during inference.53

B.3 Evaluation54

For calculation of TransErr and RotErr, we basically follow the protocol from CameraCtrl. The main55

difference is that we adopted different camera poses. We sorted the translation and rotation of the real56

camera poses from two datasets, and then randomly selected poses from the top 20% to 40% and 40%57

to 60% ranges to classify them into hard and medium groups, respectively. Additionally, we designed58

simple linear motions and rotations to create the simple group. We combined the hard, medium, and59

simple groups in a 1:1:1 ratio to adequately test the camera poses. Therefore, our selection process,60

which filters out poses with larger motion ranges, results in more challenging evaluation. For FVD61

and SSIM, we follow the common practice.62

C Ablation study63

In this section, we evaluate the contribution of each module to the model’s improvement through64

extensive ablation experiments. As shown in Table 1, each modification contributes to either the65

improvement of the video quality or better accuracy of camera control.66

Method RealEstate-I2V EpicKitchen
TransErr RotErr FVD SSIM TransErr RotErr FVD SSIM

AnimateDiff+I2V+MotionCtrl 14.10 1.71 488.3 0.797 16.31 1.70 1223.5 0.727
+ Plucker embedding 13.96 1.68 466.5 0.808 16.08 1.77 1213.0 0.728
+ SEAL 8.12 1.01 366.7 0.824 13.81 1.41 786.2 0.777
+ Concatenation 7.59 0.90 321.8 0.877 12.98 1.33 706.3 0.814
+ Camera coordination 6.75 0.77 293.7 0.903 12.41 1.27 663.2 0.839

Table 1: Ablation study. Note that for TransErr, RotErr and FVD, lower number indicates better
performance while higher SSIM means better.

D Related Work67

The exploration of egocentric 3D generation through direct camera control has undergone several68

paradigm shifts. InfiniteNature [4] stands out as an early influential work in this field. This project69

primarily utilizes traditional computer vision techniques. It takes a paired RGB image and a disparity70

map to construct a textured mesh and then renders from new perspectives by warping the textures to71

adjust disparities. To complete the process, a refinement network addresses and corrects any gaps72

or missing parts in the final output. This method does not fully leverage the learning capabilities of73

neural networks.74

After the rise of generating images using transformer-based autoregressive models, GeoGPT [6]75

posits that all camera motion control conditions can be transformed into tokens or directly summed76

embeddings. They experimented with a wide variety of ways for incorporating control conditions77

to assess their impact on the generated results. However, their fusion methods only included78

concatenation and addition. Therefore, GeoGPT encounters the same issues as CameraCtrl and79

MotionCtrl, specifically limited ranges of generated motion. Therefore, subsequent studies primarily80

focused on how to introduce more explicit geometrical control. "Look Outside the Room" [5]81

proposed using Camera-Aware Bias by computing a bias with a Multi-Layer Perceptron (MLP),82

which takes the relative camera position as input during the calculation of the attention score. The83

paper [2] utilized epipolar attention to aggregate information from patches under different viewpoints84

to generate the final render. These efforts have achieved significant progress.85
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Subsequently, the era of diffusion models arrived. Researchers [7] introduced epipolar attention86

into the use of diffusion models for 3D generation. SceneScape [3] returned to the framework87

of InfinitNature, but with the aid of a more powerful diffusion model. It integrated text control88

capabilities and achieved better results.89
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